\(\sqrt{x-2}\)+\(\sqrt{x-10}\)= x\(^2\)-12x+36+4
<=>\(\sqrt{x-2}\)+\(\sqrt{x-10}\)-4=(x-6)\(^2\)
<=>(\(\sqrt{x-2}\)-2)+(\(\sqrt{x-10}\)-2)=(x-6)\(^2\)
<=>\(\dfrac{x-6}{\sqrt{x-2}+2}\)-\(\dfrac{x-6}{\sqrt{x-10}+2}\)-(x-6)\(^2\)=0
Nghiệm x = 6
Mk cũng k biết đúng hay k nữa ! !
Em thử sử dụng phương pháp :Dùng BĐT ạ!
ĐKXĐ: \(2\le x\le10\)
Áp dụng BĐT Bunykovski: \(VT=\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)
Lại có: \(VP=\left(x^2-12x+36\right)+4=\left(x-6\right)^2+4\ge4\)
Từ đó suy ra \(VT\le4\le VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{10-x}\\x-6=0\end{matrix}\right.\Leftrightarrow x=6\)