ĐK: $x \ geqslant 5$
\(Pt\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-x-20\right)\left(x+1\right)}\)
Ta có: \(\left(x^2-x-20\right)\left(x+1\right)=\left(x+4\right)\left(x-5\right)\left(x+1\right)=\left(x+4\right)\left(x^2-4x+5\right)\)
\(\Rightarrow2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\left(\circledast\right)\)
Đặt \(\left\{{}\begin{matrix}u=x^2-4x-5\\v=x+4\end{matrix}\right.\), \(\left(\circledast\right)\) trở thành: \(2u + 3v = 5\sqrt {uv} \Leftrightarrow \left[ \begin{array}{l} u = v\\ u = \dfrac{9}{4}v \end{array} \right.\)
\(\odot u=v\Rightarrow x^2-4x-5=x+4\Leftrightarrow x^2-5x-9=0\)\(\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{5 + \sqrt {61} }}{2} \text{(nhận)}\\ x = \dfrac{{5 - \sqrt {61} }}{2} \text{(loại)} \end{array} \right.\)
\(\odot\)\(u=\dfrac{9}{4}v\)\( \Rightarrow {x^2} - 4x - 5 = \dfrac{9}{4}\left( {x + 4} \right) \Leftrightarrow 4{x^2} - 25x - 56 = 0 \Leftrightarrow \left[ \begin{array}{l} x = 8 \text{(nhận)}\\ x=\dfrac{{ - 7}}{4} \text{(loại)} \end{array} \right.\)