\(\Leftrightarrow\left(\sqrt{1-x^2}-1\right)+\left(2\sqrt[3]{1-x^2}-2\right)=0\)
\(\Leftrightarrow\dfrac{1-x^2-1}{\sqrt{1-x^2}+1}+2\cdot\dfrac{1-x^2-1}{\sqrt[3]{\left(1-x^2\right)^2}+\sqrt[3]{1-x^2}+1}=0\)
=>-x^2=0
=>x=0
\(\Leftrightarrow\left(\sqrt{1-x^2}-1\right)+\left(2\sqrt[3]{1-x^2}-2\right)=0\)
\(\Leftrightarrow\dfrac{1-x^2-1}{\sqrt{1-x^2}+1}+2\cdot\dfrac{1-x^2-1}{\sqrt[3]{\left(1-x^2\right)^2}+\sqrt[3]{1-x^2}+1}=0\)
=>-x^2=0
=>x=0
giải pt
1. \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt[]{x}}=1\)
2.\(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\)
3.\(\sqrt{14-x}-\sqrt{x-4}\sqrt{x-1}\)
4. \(3+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\)
giải phương trình :a,\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+3-4\sqrt{x-1}}=1\)
b,\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
c,\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
d, \(3+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\)
Giải các phương trình sau:
a)\(\sqrt[3]{9-x}+\sqrt[3]{7+x}=4\)
b)\(\sqrt{x-1}\cdot\sqrt[4]{x^2-4}=\sqrt{x-2}\cdot\sqrt[4]{x^2-1}\)
c)\(\sqrt[4]{9-x^2}+\sqrt{x^2-1}-2\sqrt{2}=\sqrt[6]{x-3}\)
tính giá trị biểu thức
1) A = \(\frac{15\sqrt{x}-11}{x-2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) tại \(x=3-2\sqrt{2}\)
2) \(B=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\) tại \(x=7-2\sqrt{6}\)
3) \(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\) tại \(x=7-4\sqrt{3}\)
Giải pt:
a) x=\(\sqrt{1-\dfrac{1}{x}}+\sqrt{x-\dfrac{1}{x}}\)
b) \(\sqrt{x^2+x}+\sqrt{x-x^2}=x+1\)
c) \(\sqrt{x^2-x}+\sqrt{x^2+2x}=2\sqrt{x^2}\)
d)\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
e) \(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
f) \(4x\sqrt{x+7}+3x\sqrt{7x-3}=6x^2+2\sqrt{7x^2+46x-21}\)
rút gọn
a, \(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}.\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
b,\(\left(\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}-\dfrac{3}{2-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)\
c,\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a)\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
b)\(\sqrt[3]{x+1}+\sqrt[3]{x^2}+\sqrt[3]{x}+\sqrt[3]{x^2+x}\)
c)\(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\)
Tìm x
a)\(\sqrt{x-1}=2\left(x\ge1\right)\)
b)\(\sqrt{3-x}=4\left(x\le3\right)\)
c)\(2.\sqrt{3-2x}=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\)
d)\(4-\sqrt{x-1}=\dfrac{1}{2}\left(x\ge1\right)\)
e)\(\sqrt{x-1}-3=1\)
f)\(\dfrac{1}{2}-2.\sqrt{x+2}=\dfrac{1}{4}\)
Dùng biểu thức liên hợp:
a)\(\sqrt{2x-1}-\sqrt{x+1}=2x-4\). f)\(3\sqrt{x+1}+3\sqrt{x-1}=4x+1\).
b)\(\sqrt{2x^2-3x+10}+\sqrt{2x^2-5x+4}=x+3\).
c)\(\sqrt{x+2}-\sqrt{3-x}=x^2-6x+9\).
d)\(\sqrt{x}-\sqrt{x-1}=\sqrt{x+8}-\sqrt{x+3}.\)
e)\(\sqrt{x^2+x}-\sqrt{x^2-3}=\sqrt{2x^2-x-2}-\sqrt{2x^2+1}\)
Giải phương trình:
a,\(\left(x+1\right)\sqrt{\frac{1}{x^3+1}}-2\sqrt{\frac{x^2-x+1}{x+1}}+1=0\)
b,\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)
c,\(2-x^2=\sqrt{2-x}\)
d,\(x^3+1=2\sqrt[3]{2x-1}\)
e\(2\left(x^2+x+\frac{1}{2}\right)=\sqrt{4x+1}\)
f,\(\sqrt[3]{2-x}+\sqrt{x-1}=1\)
g,\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)