\(A=1+2^{3^{2012}}\\ \Rightarrow A=1+2^{6036}\\ 1\equiv1\left(mod3\right)\\ 2\equiv2\left(mod3\right)\\ \Rightarrow2^{6036}\equiv2\left(mod3\right)\\ \Rightarrow1+2^{6036}\equiv3\equiv0\left(mod3\right)\)
Vậy A là Hợp số
\(3\equiv-1\left(mod4\right)\Rightarrow3^{2012}\equiv1\left(mod4\right);2^{4k+1}=\left(2^4\right)^k.2=16^k.2\equiv1^k.2\equiv2\left(mod3\right)\Rightarrow A\equiv0\left(mod\right)va:A>3\Rightarrow Alahopso\)