Ta có : VT2 = \(\sqrt{2019}^2+2\sqrt{2019.2021}+\sqrt{2021}^2\)
\(=2.2020+2\sqrt{\left(2020-1\right).\left(2020+1\right)}\)
\(=2.2020+2\sqrt{2020^2-1}\)
Ta thấy : \(2\sqrt{2020^2-1}< 2.2020\)
=> \(2.2020+2\sqrt{2020^2-1}< 4.2020\)
=> \(2.2020+2\sqrt{2020^2-1}< \left(2\sqrt{2020}\right)^2\)
-> \(\sqrt{VT^2}< \sqrt{\left(2\sqrt{2020}\right)^2}\)
-> \(VT< 2\sqrt{2020}\)
Vậy \(2\sqrt{2020}>\sqrt{2019}+\sqrt{2021}\)