\(\left(2\sqrt{3}\right)^2=12< 18=\left(3\sqrt{2}\right)^2\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b/ \(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12\)
\(\Rightarrow\sqrt{24}+\sqrt{45}< 12\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\left(2\sqrt{3}\right)^2=12< 18=\left(3\sqrt{2}\right)^2\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b/ \(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12\)
\(\Rightarrow\sqrt{24}+\sqrt{45}< 12\)
Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\); \(a=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
Rút gọn biểu thức:
\(a,\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(b,\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn hai biểu thức sau:
a) \(\sqrt{\frac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}\)
b) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
cho hai biểu thức A=\(\dfrac{2\sqrt{x}-4}{\sqrt{x}-1}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\) với x\(\ge\)0, x\(\ne\)1
a.tính giá trị của A khi x=4
b.rút gọn B
c.so sánh A.B với 5
Bài 1: Rút gọn biểu thức
a) \(A=\sqrt{26+15\sqrt{3}}\)
b) \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
c) \(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
d) \(D=\left(\sqrt{6}-2\right)\left(5+\sqrt{24}\right)\sqrt{5-\sqrt{24}}\)
e) \(E=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{3+\sqrt{5}}\right)\)
f) \(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
g) \(G=\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
h) \(H=\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}\)
Thực hiện phép tính:
a) \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
b)\(\sqrt{24-8\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
c)\(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
d)\(\sqrt{41+12\sqrt{5}}-\sqrt{46-6\sqrt{5}}\)
e)\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
f)\(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
g)\(\sqrt{43+24\sqrt{3}}-\sqrt{49-\sqrt{8\sqrt{3}}}\)
h)\(\sqrt{53-20\sqrt{7}}-\sqrt{64+6\sqrt{7}}\)