a) \(\sqrt{\frac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}=\sqrt{\frac{1}{2}}+\sqrt{\frac{9}{2}}+\sqrt{\frac{25}{2}}=\sqrt{\frac{1}{2}}+3\sqrt{\frac{1}{2}}+5\sqrt{\frac{1}{2}}=9\sqrt{\frac{1}{2}}\)
b) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=\sqrt{4.5}-\sqrt{9.5}+3\sqrt{9.2}+\sqrt{36.2}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}=-\sqrt{5}+15\sqrt{2}\)
a) \(\sqrt{\frac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}=\frac{\sqrt{2}}{2}+\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2}=\frac{9\sqrt{2}}{2}\)
b) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}=-\sqrt{5}+15\sqrt{2}=15\sqrt{2}-\sqrt{5}\)