Ta có : \(\sqrt{961}< \sqrt{1089}\)
\(\left(\dfrac{1}{\sqrt{6}}-1\right)< \left(\dfrac{1}{\sqrt{7}}+1\right)\)
=> x<y
Goodluck
Ta có:
+) \(\sqrt{961}-\left(\dfrac{1}{\sqrt{6}}-1\right)\)
\(=31-\dfrac{1}{\sqrt{6}}+1\)
\(=32-\dfrac{1}{\sqrt{6}}\)
+)\(\sqrt{1089}-\left(\dfrac{1}{\sqrt{7}}+1\right)\)
\(=33-\dfrac{1}{\sqrt{7}}-1\)
\(=32-\dfrac{1}{\sqrt{7}}\)
* Ta lại có:
\(\sqrt{6}< \sqrt{7}\)
\(\Rightarrow\dfrac{1}{\sqrt{6}}>\dfrac{1}{\sqrt{7}}\)
\(\Rightarrow32-\dfrac{1}{\sqrt{6}}< 32-\dfrac{1}{\sqrt{7}}\) hay \(\sqrt{961}-\left(\dfrac{1}{\sqrt{6}}-1\right)< \text{}\text{}\) \(\sqrt{1089}-\left(\dfrac{1}{\sqrt{7}}+1\right)\)
Vậy \(\sqrt{961}-\left(\dfrac{1}{\sqrt{6}}-1\right)< \text{}\text{}\) \(\sqrt{1089}-\left(\dfrac{1}{\sqrt{7}}+1\right)\)
Bài này tớ giải bừa thoi, tớ đọc lại cũng thấy khó hiểu nữa mà