\(A^{12}=2^6.4^2.3=2^6.2^4.3=2^2.3.2^8\)
\(B^{12}=3^6.2^2.3=2^2.3.3^6\)
\(2^8=\left(2^4\right)^2=16^2< 27^2=\left(3^3\right)^2=3^6\)
\(\Rightarrow B>A\)
\(A^{12}=2^6.4^2.3=2^6.2^4.3=2^2.3.2^8\)
\(B^{12}=3^6.2^2.3=2^2.3.3^6\)
\(2^8=\left(2^4\right)^2=16^2< 27^2=\left(3^3\right)^2=3^6\)
\(\Rightarrow B>A\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
So sánh A với 1
\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
Rút gọn biểu thức:
\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)
a. P= (\(3+\sqrt{2}+\sqrt{6}\))(\(\sqrt{6-3\sqrt{3}}\))
b. A=(\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\)): (\(\sqrt{6}+11\))
c. B= \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)-\(\sqrt{8}\)
d. C= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
đ. D=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
e. E= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
ê. G= \(\sqrt{4+5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
g. H=\(\frac{2\sqrt{4+\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
i. I=\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
k. K=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Tính:
\(a,\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(b,\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}\)
Thu gọn biểu thức:
\(A=\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(B=\sqrt{\left(1-\sqrt{2020}\right)^2}.\sqrt{2021+2\sqrt{2020}}\)
\(C=\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
giúp mk tính
a,\(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)
b,(\(\sqrt{5}+\sqrt{2}\)) (\(3\sqrt{2}-1\))
c,\(3\sqrt{50}-2\sqrt{75}-4\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)
d, \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)
e, \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)
f, \(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}-\dfrac{20}{\sqrt{10}}\)
bài 2
a, \(\sqrt{9-4\sqrt{5}}\)
b,\(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)
c\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
d, \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
e,\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)+\(\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{5}-\sqrt{3}}-\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)
f, \(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
Trục căn ở mẫu:
\(a)\frac{5}{\sqrt{10}}\\ b)\frac{-2}{1-\sqrt{5}}\\ c)\frac{4}{\sqrt{3}+\sqrt{2}}\\ d)\frac{1}{3-2\sqrt{2}}\\ e)\frac{6-\sqrt{6}}{1-\sqrt{6}}\\ g)\frac{3\sqrt{2}-2\sqrt{3}}{2\left(\sqrt{3}-\sqrt{2}\right)}\\ h)\frac{\sqrt{3}-3}{\sqrt{3}-1}\\ i)\frac{\sqrt{15}}{5\sqrt{3}+3\sqrt{5}}\)