Lời giải:
a)
\(\sqrt{10}> \sqrt{9}\Leftrightarrow \sqrt{10}> 3\)
\(\sqrt{5}> \sqrt{4}\Leftrightarrow \sqrt{5}> 2\)
\(\Rightarrow \sqrt{10}+\sqrt{5}>3+2\Leftrightarrow \sqrt{10}+\sqrt{5}> 5\) (1)
Mặt khác \(\sqrt{24}< \sqrt{25}\Leftrightarrow \sqrt{24}< 5\) (2)
Từ \((1);(2)\Rightarrow \sqrt{10}+\sqrt{5}> \sqrt{24}\)
b) Đặt \(\frac{a}{b}=\frac{b}{c}=k\Rightarrow a=bk; b=ck\)
Khi đó:
\(\frac{a}{c}=\frac{bk}{c}=\frac{ck.k}{c}=k^2(3)\)
Và áp dụng tính chất dãy tỉ số bằng nhau:
\(k^2=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}(4)\)
Từ \((3);(4)\Rightarrow \frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)