\(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2\)
Vậy: A<B
A = 2011 . 2013
A = (2012 - 1) (2012 + 1)
A = 20122 - 1 < 20122
A < B
\(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2\)
Vậy: A<B
A = 2011 . 2013
A = (2012 - 1) (2012 + 1)
A = 20122 - 1 < 20122
A < B
So sánh A=2013^2010+1/2013^2011+1;B=2013^2011-2/2013^2012-2
So sánh:
A = \(\frac{2011^{2012}+1}{2011^{2013}+1}\)với B = \(\frac{2011^{2013}+1}{2011^{2014}+1}\)
So sánh \(A=\frac{2011}{2012}+\frac{2012}{2013}\) và \(B=\frac{2011+2012}{2012+2013}\)
so sánh
A=\(\frac{2011+2012}{2012+2013}\) và B=\(\frac{2011}{2012}+\frac{2012}{2013}\)
bài 1: a)thực hiện phép tính :1-5-9+13+17-21-25+....+2001-2005-2009+2013
b)so sánh P và Q biết :
P = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\) ; Q =\(\frac{2010+2011+2012}{2011+2012+2013}\)
1 so sánh
1) A=218-3/220-3
B=220-3/222-3
2) A=20132010+1/20132011+1
B=20132011-2/20132012-2
Câu 1:
a) Cho S= \(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+............+\(\dfrac{1}{2^{2012}}+\dfrac{1}{2^{2013}}\). Chứng tỏ S<1
b) So Sánh: A=\(\dfrac{2011^{2012}+1}{2011^{2013}+1}\) với B=\(\dfrac{2011^{2013}+1}{2011^{2014}+1}\)
c) So Sánh: C=\(3^{210}\)với D=\(2^{310}\)
Thực hiện tính: A = \(\frac{2015+2013+2011+2009+...+7+5+3+1}{2015-2013+2011-2009+.....+7-5+3-1}\)
Tính:
a) \(A=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+...+2013\right)\)b) \(B=\dfrac{1-3}{1\cdot3}+\dfrac{2-4}{2\cdot4}+\dfrac{3-5}{3\cdot5}+\dfrac{4-6}{4\cdot6}+...+\dfrac{2011-2013}{2011\cdot2013}+\dfrac{2012-2014}{2012\cdot2014}+\dfrac{2013-2015}{2013\cdot2015}\)Giúp mình với!