So sánh \(A=\frac{2011}{2012}+\frac{2012}{2013}\) và \(B=\frac{2011+2012}{2012+2013}\)
so sánh
A=\(\frac{2011+2012}{2012+2013}\) và B=\(\frac{2011}{2012}+\frac{2012}{2013}\)
So sánh:
A = \(\frac{2011^{2012}+1}{2011^{2013}+1}\)với B = \(\frac{2011^{2013}+1}{2011^{2014}+1}\)
So sánh A=2013^2010+1/2013^2011+1;B=2013^2011-2/2013^2012-2
1.so sánh
a. A=\(\frac{2005^{2005}+1}{2005^{2006}+1}\) và B=\(\frac{2005^{2004}+1}{2005^{2005}+1}\)
b. A=\(\frac{20^{10}+1}{20^{10}-1}\) và B=\(\frac{20^{10}-1}{20^{10}-3}\)
c. A=\(\frac{2009^{2009}+1}{2009^{2010}+1}\) và B=\(\frac{2009^{2010}+2}{2009^{2011}-2}\)
d. A=\(\frac{2013^{2014}+2014}{2013^{2014}-2014}\) và B=\(\frac{2013^{2014}-2014}{2013^{2014}-6042}\)
1,
a,tính:\(\dfrac{\dfrac{7}{2012}+\dfrac{7}{9}-\dfrac{1}{4}}{\dfrac{5}{9}-\dfrac{1}{2012}-\dfrac{1}{2}}\)
b,so sánh:A=\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2010};B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{17}\)
Câu 3:
a)\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
b)\(\left(\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2013}\right).x=\dfrac{2012}{1}+\dfrac{2011}{2}+\dfrac{2010}{3}+.....+\dfrac{2}{2011}+\dfrac{1}{2012}\)
1,so sánh A và B biết:A=\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2010};B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{17}\)
Thực hiện tính: A = \(\frac{2015+2013+2011+2009+...+7+5+3+1}{2015-2013+2011-2009+.....+7-5+3-1}\)