\(3^{39}and11^{21}\)
\(3^{39}< 3^{42};3^{42}=3^{6.7}=\left(3^6\right)^7=729^7\)
\(11^{21}=11^{3.7}=\left(11^3\right)^7=1331^7\)
Mà \(729^7< 1331^7\)
\(\Rightarrow3^{42}< 11^{21}\)
Giải:
Ta có:
\(3^{39}=\left(3^{13}\right)^3=1594323^3\)
\(11^{21}=\left(11^7\right)^3=19487171^3\)
Vì \(1594323< 19487171\)
Nên \(1594323^3< 19487171^3\)
Hay \(3^{39}< 11^{21}\)
Vậy \(3^{39}< 11^{21}\).