\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2018}{5^{2018}}\)
\(5A=1+\frac{2}{5}+\frac{3}{5^2}+\frac{4}{5^3}+...+\frac{2018}{5^{2017}}\)
Trừ dưới cho trên:
\(4A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2017}}-\frac{2018}{5^{2018}}\)
Đặt \(C=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2017}}\) (1)
\(\Rightarrow4A=C-\frac{2018}{5^{2018}}< C\Rightarrow A< \frac{1}{4}C\)
Ta có: \(\frac{1}{5}C=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2017}}+\frac{1}{5^{2018}}\) (2)
Trừ (1) cho (2):
\(\frac{4}{5}C=1-\frac{1}{5^{2018}}\Rightarrow C=\frac{5}{4}-\frac{1}{4.5^{2017}}< \frac{5}{4}\)
\(\Rightarrow A< \frac{1}{4}C< \frac{1}{4}.\frac{5}{4}=\frac{5}{16}< \frac{2018}{2019}\)
\(\Rightarrow A< B\)
Đề đúng : So sánh 2 số sau :
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}...+\frac{2018}{5^{2018}}\)
\(B=\frac{2018}{2019}\)