So sánh 2 biểu thức A và B
a, A=\(\dfrac{10^{15}+1}{10^6+1}\) và B= \(\dfrac{10^6+1}{10^{17}+1}\)
b, C=\(\dfrac{2^{2008}-3}{2^{2007}-1}\) và D=\(\dfrac{2^{2007}+3}{2^{2006}-1}\)
c, M=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\) và N=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
d, E=\(\dfrac{23^{2000}+3}{23^{2001}+40}\) và F=\(\dfrac{23^{2001}+3}{23^{2002}+40}\)
a, \(A=\dfrac{10^{15}+1}{10^6+1}>1\);\(B=\dfrac{10^6+1}{10^{17}+1}< 1\)
⇒\(A>B\)
b, \(D=\dfrac{2^{2007}+3}{2^{2006}-1}=\dfrac{2^{2008}+6}{2^{2007}-2}\)
Ta có : \(\dfrac{2^{2008}-3}{2^{2007}-1}< \dfrac{2^{2008}-3}{2^{2007}-2}< \dfrac{2^{2008}+6}{2^{2007}-2}\)
⇒ \(C< D\)
c, \(M=\dfrac{3}{8^3}+\dfrac{7}{8^4}=\dfrac{3}{8^3}+\dfrac{3}{8^4}+\dfrac{4}{8^4}\)
\(N=\dfrac{7}{8^3}+\dfrac{3}{8^4}=\dfrac{3}{8^3}+\dfrac{4}{8^3}+\dfrac{3}{8^4}\)
Vì \(\dfrac{4}{8^4}< \dfrac{4}{8^3}\)
⇒ \(M< N\)