\(\left(\frac{1-cos2x}{2}\right)^2+\left[\frac{1+cos\left(2x+\frac{\pi}{2}\right)}{2}\right]^2=\frac{1}{4}\)
\(\Leftrightarrow\left(1-cos2x\right)^2+\left(1-sin2x\right)^2=1\)
\(\Leftrightarrow1-2cos2x+cos^22x+1-2sin2x+sin^22x=1\)
\(\Leftrightarrow sin2x+cos2x=1\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)