Sin3x.sin^3(x) + cos3x.cos^3(x) = cos^3(2x)
a) chứng minh không phụ thuộc vào x
Q= [(1-sinx-cos2x+sin3x)/(cosx+sin2x+cos3x)]*tan(x-(pi/2)
b) chứng minh:
cos 5x*cos 3x+sin 7x*sin x=2cos^3 2x -2 cos^2 x +1
Bài 1: chứng minh rằng
a, \(\dfrac{\sin x+\cos x-1}{1-\cos x}\)=\(\dfrac{2\cos x}{\sin x-\cos x+1}\)
b, \(\cot^2x-\cos^2x=\cot^2x\cos^2x\)
CM BT ko phụ thuộc vào tham số x
\(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
B\(=\frac{tan^2x}{sin^2x.cos^2x}-\left(1+tan^2x\right)^2\)
Cho \(sin\left(x-y\right)=\frac{1}{2}\). Chứng minh: \(1-\sin^2x-\sin^2y+2\sin x.\sin y.\cos\left(x-y\right)=\frac{3}{4}\)
Cho tanx=-3, với \(\frac{\pi}{2}< x< \pi\). Tính giá trị của biểu thức
\(A=\frac{4sin^2x+5sinx.cosx+cos^2x}{sin^2x-2}\)
cho \(\tan x=\dfrac{3}{5}\)tính ;
A\(=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
cho x+y+z+t=2\(\Pi\)
CMR \(\cos^2x+\cos^2y-\cos^2z-\cos^2t=-2\sin\left(x+y\right)\sin\left(y+z\right)\cos\left(x+z\right)\)
CMR: biểu thức sau độc lập đối với x: 1/cos^6x - tan^6x - 3tan^2x/cos^2x