Sắp xếp các đa thức sau theo lũy thừa giảm của biến rồi thực hiện phép chia :
a) \(\left(12x^2-14x+3-6x^3+x^4\right):\left(1-4x+x^2\right)\)
b) \(\left(x^5-x^2-3x^4+3x+5x^3-5\right):\left(5+x^2-3x\right)\)
c) \(\left(2x^2-5x^3+2x+2x^4-1\right):\left(x^2-x-1\right)\)
Làm phép chia
a, \(3x^3y^2:x^2\)
b, \(\left(x^5+4x^3-6x^2\right):4x^2\)
c, \(\left(x^3-8\right):\left(x^2+2x+4\right)\)
d, \(\left(3x^2-6x\right):\left(2-x\right)\)
e, \(\left(x^3+2x^2-2x-1\right):\left(x^2+3x+1\right)\)
1. tính
a, \(\left(4x^4-10x^3-x^2+15x-5\right):\left(-3+2x^2\right)\)
b, \(\left(19^2-11x^3+2-20x+2x^4\right):\left(x^2+1-4x\right)\)
2. tìm x thuộc Z để f(x) chia hết cho g(x)
a, \(f\left(x\right)=2x^3+3x^2-x+4\) và \(g\left(x\right)=2x+1\)
b, \(f\left(x\right)=3x^3-x^2+6x\) và \(g\left(x\right)=3x-1\)
Mọi người biết giúp mình với ạ, tối là đi học r, cần gấp lắm. Xin cảm ơn!!
Làm phép chia bằng cách áp dụng hằng đẳng thức:
a) \(\left(x^8-2x^4y^4+y^8\right):\left(x^2+y^2\right)\)
b) \(\left(64x^3+27\right):\left(16x^2-12x+9\right)\)
c) \(\left(x^3-9x^2+27x-27\right):\left(x^2-6x+9\right)\)
d) \(\left(x^3y^6z^9-1\right):\left(xy^2z^3-1\right)\)
LÀM TÍNH CHIA:
a) \(\left(6x^6+2x^5-2x^4-15x^3+x^2+7x+2\right):\left(3x^2+x-1\right)\)
b) \(\left(-6x^4+5x^3+17x^2-23x+7\right):\left(-3x^2-2x+7\right)\)
Tính nhanh :
a) \(\left(4x^2-9y^2\right):\left(2x-3y\right)\)
b) \(\left(27x^3-1\right):\left(3x-1\right)\)
c) \(\left(8x^3+1\right):\left(4x^2-2x+1\right)\)
d) \(\left(x^2-3x+xy-3y\right):\left(x+y\right)\)
Làm tính chia
\(1.\left(6x^3-7x^2-x+2\right):\left(2x+2\right)\)
\(2.\left(x^2-y^2+6x-9\right):\left(x+y+3\right)\)
\(3.\left(x^4-x-14\right):\left(2x-5\right)\)
Làm tính chia :
a) \(\left(6x^2+13x-5\right):\left(2x+5\right)\)
b) \(\left(x^3-3x^2+x-3\right):\left(x-3\right)\)
c) \(\left(2x^4+x^3-5x^2-3x-3\right):\left(x^2-3\right)\)
Bài 8: Tìm giá trị lớn nhật hoặc giá trị nhỏ nhất của thương khi chia f(x) cho g(x), biết:
a) \(f\left(x\right)=x^3-7x+6\)và\(g\left(x\right)=x+3\)
b) \(f\left(x\right)=3x^4-2x^3-2x^2+4x-8\)và \(g\left(x\right)=x^2-2\)