a/ \(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)
b/ \(\dfrac{x^2-3x+2}{x^3-1}=\dfrac{x^2-x-2x+2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-2}{x^2+x+1}\)
c/ \(\dfrac{x^2-y^2}{x^2-y^2+xz-yz}=\dfrac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)+z\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)\left(x+y+z\right)}=\dfrac{x+y}{x+y+z}\)