a) Ta có: \(\frac{a-x}{x-a}\)
\(=\frac{-\left(x-a\right)}{x-a}\)
=-1
b) Ta có: \(\frac{\left(-x\right)^5\cdot a^2}{x^2\cdot\left(-a\right)^3}\)
\(=\frac{-x^5\cdot a^2}{-x^2\cdot a^3}\)
\(=x^3\cdot\frac{1}{a}=\frac{x^3}{a}\)
a) Ta có: \(\frac{a-x}{x-a}\)
\(=\frac{-\left(x-a\right)}{x-a}\)
=-1
b) Ta có: \(\frac{\left(-x\right)^5\cdot a^2}{x^2\cdot\left(-a\right)^3}\)
\(=\frac{-x^5\cdot a^2}{-x^2\cdot a^3}\)
\(=x^3\cdot\frac{1}{a}=\frac{x^3}{a}\)
rút gọn các phân thức
a) \(\frac{x^2-16}{4x-x^2}\left(x\ne0,x\ne4\right)\) d) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ab}\)
b) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\left(x\ne y\right)\) c) \(\frac{\left(x+y\right)^2-z^2}{x+y+z}\left(x+y+z\ne0\right)\)
e)\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}\)
Bài 1. Cho a+b+c=0. Đặt P=\(\frac{a-b}{b}+\frac{b-c}{a}+\frac{c-a}{b}\); Q=\(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\).Tính P.Q
b) Rút gọn rồi tính giá trị biểu thức E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\)biết \(1-\frac{x^2}{abc}=0\)
Cho biểu thức
A= \(\left[\frac{3}{2}\left(x^4-\frac{x^4+1}{x^2+1}\right).\frac{x^3-x\left(4x-1\right)-4}{x^7+6x^6-x-6}\right]:\frac{x^2+29x+78}{3x^2+12x-36}\)
a) Rút gọn A
b) Tìm x nguyên để A có giá trị nguyên
bài 1: rút gọn phân thức
a.\(\frac{3x\left(1-x\right)}{2\left(x-1\right)}\)
b. \(\frac{6x^2y^2}{8xy^5}\)
c. \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}\)
bài 5: cho biểu thức A=\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a. Tìm điều kiện của biến x để giá trị của biểu thức A được xác định ?
b. Tìm giá trị của x để A=1;A=-3
bài 6:cho phân thức A=\(\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\left(x\ne5;x\ne-5\right)\)
a. Rút gọn A
b. cho A=-3. Tính giá trị của biểu thức 9x2-42x+49
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Cho biểu thức :
A= \(\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi \(\left|x-\frac{7}{2}\right|=\frac{1}{2}\)
c) Tìm x để A= -16
Tính giá trị của biểu thức:
E = \(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\) biết \(1-\frac{x^2}{abc}=0\)
Cho biểu thức
A = \(\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right)\)\(:\left(x-2+\frac{10-x^2}{x+2}\right)\)
a, Rút gọn A
b, Tìm x \(\in Z\) để A Max
Cho biểu thức
A=\(\left[\frac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\frac{2x^2-x-10}{2\left(x^3-x^2+x-1\right)}\right]:\left[\frac{5}{x^2+1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x+1\right)}\right]\)