Có:\(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right) ^2=0\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Rightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\)
Có:
\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2\)
\(=y^2-2yz+z^2+z^2-2xz+z^2+x^2-2xy+y^{^2}\)
\(=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
\(=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2\)
\(=3\left(x^2+y^2+z^2\right)\)
\(\Rightarrow\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\)
\(=\dfrac{1}{3}\)