ta có: x+y+z=0
=>\(\left(x+y+z\right)^2=0=>x^2+y^2+z^2=-2\left(xy+yz+xz\right)\)
A=\(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\dfrac{x^2+y^2+z^2}{y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2}=\dfrac{x^2+y^2+z^2}{2y^2+2z^2+2x^2-2\left(yz+xy+xz\right)}=\dfrac{x^2+y^2+z^2}{2y^2+2z^2+2x^2+x^2+y^2+z^2}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
vậy.......
chúc bạn học tốt ^ ^
Ta có :
\(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
⇔ \(\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)}\) (*)
Lại có :
\(x+y+z=0\)
⇔ \(\left(x+y+z\right)^2=0\)
⇔ \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
⇔ \(x^2+y^2+z^2=-2\left(xy+yz+xz\right)\)
Thay vào biểu thức (*) ta có :
\(\dfrac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(xy+yz+xz\right)}\)
= \(\dfrac{-2\left(xy+yz+xz\right)}{-6\left(xy=yz+xz\right)}\)
= \(\dfrac{1}{3}\)