\(\frac{x\left(x-3\right)-2x+6}{x^2-x}=\frac{x^2-3x-2x+6}{x\left(x-2\right)}=\frac{\left(x^2-2x\right)-\left(3x-6\right)}{x\left(x-2\right)}\)
\(=\frac{x\left(x-2\right)-3\left(x-2\right)}{x\left(x-2\right)}=\frac{\left(x-3\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x-3}{x}\)
\(\frac{x\left(x-3\right)-2x+6}{x^2-2x}\)
=\(\frac{x\left(x-3\right)-2\left(x-3\right)}{x\left(x-2\right)}\)
=\(\frac{\left(x-2\right)\left(x-3\right)}{x\left(x-2\right)}\)
=\(\frac{x-3}{x}\)
CHÚC BẠN HỌC TỐT!
\(\frac{x\left(x-3\right)-2x+6}{x^2-2x}=\frac{x\left(x-3\right)-2\left(x+3\right)}{x\left(x-2\right)}=\frac{\left(x-2\right)\left(x-3\right)\left(x+3\right)}{x\left(x-2\right)}=\frac{\left(x-2\right)\left(x^2-3^2\right)}{x\left(x-2\right)}=\frac{x^2-9}{x}=\frac{x-9}{1}=x-9\)