\(P=tana\left(\frac{1+cos^2a}{sina}-sina\right)=\frac{sina}{cosa}\left(\frac{1+cos^2a-sin^2a}{sina}\right)\)
\(=\frac{sina}{cosa}.\frac{2cos^2a}{sina}=2cosa\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(P=tana\left(\frac{1+cos^2a}{sina}-sina\right)=\frac{sina}{cosa}\left(\frac{1+cos^2a-sin^2a}{sina}\right)\)
\(=\frac{sina}{cosa}.\frac{2cos^2a}{sina}=2cosa\)
\(F=\dfrac{\sin\alpha-2\sin\left(2\alpha\right)+\sin\left(3\alpha\right)}{\cos\alpha-3\cos\left(2\alpha\right)+\cos\left(3\alpha\right)}\)
Mn rút gọn giùm mình biểu thức này với. Mình cảm ơn ạ :<
đơn giản biểu thức:
a, \(\left(\frac{sin\alpha+tan\alpha}{cos\alpha+1}\right)^2+1\)
b, \(tan\alpha\left(\frac{1+cos^2\alpha}{sin\alpha}-sin\alpha\right)\)
c, \(\frac{cot^2\alpha-cos^2\alpha}{cot^2a}+\frac{sin\alpha.cos\alpha}{cot\alpha}\)
Rút gọn biểu thức: P=\(\left(\frac{\sin\alpha+\tan\alpha}{\cos\alpha+1}\right)^2+1\)
Chứng minh các đẳng thức sau:
a, \(\sin^4\alpha-\cos^4\alpha+1=2\sin^2\alpha\)
b,\(\dfrac{\sin^2\alpha+2\cos^2\alpha-1}{\cot^2\alpha}=\sin^2\alpha\)
c, \(\dfrac{1-\sin^2\alpha.\cos^2\alpha}{\cos^2\alpha}-\cos^2\alpha=\tan^2\alpha\)
d, \(\dfrac{\sin^2\alpha-\tan^2\alpha}{\cos^2\alpha-\cot^2\alpha}=\tan^6\alpha\)
e, \(\left(1+\cot\alpha\right)\sin^3\alpha+\left(1+\tan\alpha\right)\cos^3\alpha=\sin\alpha.\cos\alpha\)
f,\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-1}{\cot\alpha-\sin\alpha.\cos\alpha}=2\tan^2\alpha\)
Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi< x< 2\pi\)
Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết:
a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180
b) \(\cos\alpha=\frac{-2}{3}\left(\pi< \text{}\alpha< \frac{3\pi}{2}\right)\)
Bài 3) a) Tính các giá trị lượng giác còn lại của góc \(\alpha\), biết sin\(\alpha\) =\(\frac{1}{5}\) và tan\(\alpha\)+cot\(\alpha\) < 0
b) Cho \(3\sin^4\alpha-cos^4\alpha=\frac{1}{2}\). Tính giá trị biểu thức A=\(2sin^4\alpha-cos\alpha\)
Bài 4) a) Cho \(\cos\alpha=\frac{2}{3}\) Tính giá trị biểu thức: A=\(\frac{tan\alpha+3cot\alpha}{tan\alpha+cot\alpha}\)
b) Cho \(\tan\alpha=3\) Tính giá trị biểu thức: B=\(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
c) Cho \(\cot\alpha=\sqrt{5}\) Tính giá trị biểu thức: C=\(sin^2\alpha-sin\alpha\cdot cos\alpha+cos^2\alpha\)
Bài 5) Chứng minh các hệ thức sau:
a) \(\frac{1+sin^4\alpha-cos^4\alpha}{1-sin^6\alpha-cos^6\alpha}=\frac{2}{3cos^2\alpha}\)
b) \(\frac{sin^2\alpha\left(1+cos\alpha\right)}{cos^2\alpha\left(1+sin\alpha\right)}=\frac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}\)
c) \(\frac{tan\alpha-tan\beta}{cot\alpha-cot\beta}=tan\alpha\cdot tan\beta\)
d) \(\frac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}=sin^2\alpha\times cos^2\alpha\)
Bài 6) Cho \(cos4\alpha+2=6sin^2\alpha\) với \(\frac{\pi}{2}< \alpha< \pi\). Tính \(\tan2\alpha\)
Bài 7) Cho \(\frac{1}{tan^2\alpha}+\frac{1}{cot^2\alpha}+\frac{1}{sin^2\alpha}+\frac{1}{\cos^2\alpha}=7\). Tính \(\cos4\alpha\)
Bài 8) Chứng minh các biểu thức sau:
a) \(\sin\alpha\left(1+cos2\alpha\right)=sin2\alpha cos\alpha\)
b) \(\frac{1+sin2\alpha-cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\alpha\)
c) \(tan\alpha-\frac{1}{tan\alpha}=-\frac{2}{tan2\alpha}\)
Bài 9) Chứng minh trong mọi tam giác ABC ta đều có:
a) sinA + sinB + sinC = \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
b) \(sin^2A+sin^2B+sin^2C=2\left(1+cosAcosBcosC\right)\)
Bài 10) Chứng minh trong mọi tam giác ABC không vuông ta đều có:
a) \(tanA+tanB+tanC=tanAtanBtanC\)
b) \(cotAcotB+cotBcotC+cotCcotA=1\)
Bài 11) Chứng minh trong mọi tam giác ABC ta đều có:
a) \(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\)
b) \(cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}=cot\frac{A}{2}cot\frac{B}{2}cot\frac{C}{2}\)
Rút gọn biểu thức:
a, A = \(\dfrac{4\sin^2\alpha}{1-\cos\dfrac{\alpha}{2}}\)
b, B = \(\dfrac{1+\cos\alpha-\sin\alpha}{1-\cos\alpha-\sin\alpha}\)
c, C = \(\dfrac{1+\sin\alpha-2\sin^2\left(45^o-\dfrac{\pi}{2}\right)}{4\cos\dfrac{\alpha}{2}}\)
a) Biến đổi \(\sin\alpha-1\)thành tích
b) Rút gọn biểu thức \(P=\dfrac{\cos\alpha+2\cos3\alpha+\cos5a}{\sin\alpha+2\sin3\alpha+\sin5a}\)
c) Tính giá trị biểu thức \(P=\sin30.\cos60+\sin60.\cos30\)
d) Giá đúng của \(cos\dfrac{2\pi}{7}+\cos\dfrac{4\pi}{7}+\cos\dfrac{6\pi}{7}\)
e) Giá trị đúng của \(\tan\dfrac{\pi}{24}+\tan\dfrac{7\pi}{24}\)
Đơn giản biểu thức sau:
\(F=sin\left(\pi+\alpha\right)-cos\left(\dfrac{\pi}{2}-\alpha\right)+cot\left(2\pi-\alpha\right)+tan\left(\dfrac{3\pi}{2}-\alpha\right)\)
biết : \(\left(\frac{sin\alpha+tan\alpha}{cos\alpha+1}\right)^2+1=\sqrt{5}\) . Tính cos2α