1,giá trị lớn nhất cảu biểu thức là:
a, A= sin2x+ 2cosx+1
c, B= cos2x- 2sinx -3
2, kết quả thu gọn của các biểu thức là:
a, A= \(\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosx}}}\) ( 0<x< \(\frac{\pi}{2}\))
b, B= \(\sqrt{2+\sqrt{2+\sqrt{2+2cosa}}}\) ( 0<x< \(\frac{\pi}{2}\))
Rút gọn biểu thức \(\sqrt{\frac{1}{2}-\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\alpha}}\) \(\left(0\le\alpha\le\pi\right)\)
Chứng minh đẳng thức sau :
1) \(sin^2\left(\frac{\pi}{8}+x\right)-sin^2\left(\frac{\pi}{8}-x\right)=\frac{\sqrt{2}}{2}sin2x\)
2) \(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=tanx\)
P=\(\frac{\text{(sinx+cosx)^2-1 }}{\sqrt{2}cos\left(x+\frac{\Pi}{4}\right).cotx}-\frac{1}{cosx-sinx}\)
ai giúp em bài này với rút gọn biểu thử ạ
Cho \(0< \alpha< \frac{\pi}{2}\). Rút gọn biểu thức \(\sqrt{\frac{1-sin\alpha}{1+sin\alpha}}-\sqrt{\frac{1+sin\alpha}{1-sin\alpha}}\)
Rút gọn:
\(\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\cos a}}\) (0<a<π)
Mng giúp mình với!! Mình cần gấp
chứng minh rằng
a)
\(\frac{1-2\text{s}in^2x}{2cot\left(\frac{\pi}{4}+\alpha\right).c\text{os}^2\left(\frac{\pi}{4}-\alpha\right)}=1\)
b)
\(\frac{\frac{\sqrt{3}}{2}c\text{os}2\text{a}-\frac{1}{2}sin2\text{a}}{1-\frac{1}{2}c\text{os}2\text{a}-\frac{\sqrt{3}}{2}sin2\text{a}}=tan\left(a+\frac{\pi}{4}\right)\)
CMR
\(\frac{\sqrt{2}cosx-2cos\left(\frac{\pi}{4}+x\right)}{2sin\left(\frac{\pi}{4}+x\right)-\sqrt{2}sinx}=tanx\)
Chứng minh đẳng thức lượng giác:
\(\frac{2sin^2\frac{x}{2}+sin2x-1}{2sinx-1}+sinx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)