\(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3-1\right)}\)
\(=\dfrac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.5}\)
\(=\dfrac{2^{12}.3^{10}.6}{2^{11}.3^{11}.5}=\dfrac{2.6}{3.5}=\dfrac{4}{5}\)
\(A=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+6^9.6.2^2.5}{\left(2^3\right)^4.3^{12}-6^{11}}=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\dfrac{2^{11}.3^{10}\left(2^1+2^1.5\right)}{2^{11}.3^{10}\left(2^1.3^2-1.3^1\right)}=\dfrac{2+10}{2.9-1.3}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(A=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\dfrac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\dfrac{2.6}{3.5}=\dfrac{4}{5}\)