a) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}=\left|4-\sqrt{15}\right|+\sqrt{15}=4-\sqrt{15}+\sqrt{15}=4\)
b) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|=2-\sqrt{3}+\sqrt{3}-1=1\)
a) Ta có: \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(=\left|4-\sqrt{15}\right|+\sqrt{15}\)
\(=4-\sqrt{15}+\sqrt{15}\)
=4
b) Ta có: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(=2-\sqrt{3}+\sqrt{3}-1\)
\(=1\)
a) \(\sqrt{\left(4-\sqrt{15}\right)^{2^{ }}}+\sqrt{15}\)
=\(\left|4-\sqrt{15}\right|+\sqrt{15}\)
= \(4-\sqrt{15}+\sqrt{15}\) ( vì 4 =\(\sqrt{16}\) mà \(\sqrt{16}>\sqrt{15}\) )
=4
b)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
=\(\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\) ( vì \(1< \sqrt{3}< 2\))
= \(2-\sqrt{3}-1+\sqrt{3}\)
=1