Đặt \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=2c\\y+z=2a\\z+x=2b\end{matrix}\right.\)
\(\Rightarrow2A=\left(y+z\right)x^2+\left(x+z\right)y^2+\left(x+y\right)z^2+2xyz\)
\(=x^2y+x^2z+xy^2+y^2z+xz^2+yz^2+2xyz\)
\(=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)
\(=x\left(xy+xz+yz+y^2\right)+z\left(xy+yz+xz+y^2\right)\)
\(=\left(x+z\right)\left[x\left(y+z\right)+y\left(y+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(=8abc\Rightarrow A=4abc\)
Vậy...