Lời giải:
Ta có:
\(A\sqrt{2}=\frac{6+2\sqrt{5}}{2+\sqrt{6+2\sqrt{5}}}+\frac{6-2\sqrt{5}}{2-\sqrt{6-2\sqrt{5}}}\)
\(=\frac{6+2\sqrt{5}}{2+\sqrt{5+1+2\sqrt{5}}}+\frac{6-2\sqrt{5}}{2-\sqrt{5+1-2\sqrt{5}}}\)
\(=\frac{6+2\sqrt{5}}{2+\sqrt{(\sqrt{5}+1)^2}}+\frac{6-2\sqrt{5}}{2-\sqrt{(\sqrt{5}-1)^2}}\)
\(=\frac{2(3+2\sqrt{5})}{3+2\sqrt{5}}+\frac{2(3-2\sqrt{5})}{3-2\sqrt{5}}=2+2=4\)
\(\Rightarrow A=\frac{4}{\sqrt{2}}=2\sqrt{2}\)