\(A=\dfrac{2^4\cdot5^4\cdot3^4-2^4\cdot3^2\cdot5^2}{2^8\cdot3^3\cdot5^2}\)
\(=\dfrac{2^4\cdot3^2\cdot5^2\left(3^2\cdot5^2-1\right)}{2^8\cdot3^3\cdot5^2}=\dfrac{1}{16}\cdot\dfrac{1}{3}\cdot\dfrac{15^2-1}{1}\)
\(=\dfrac{224}{48}=\dfrac{14}{3}\)
\(A=\dfrac{2^4\cdot5^4\cdot3^4-2^4\cdot3^2\cdot5^2}{2^8\cdot3^3\cdot5^2}\)
\(=\dfrac{2^4\cdot3^2\cdot5^2\left(3^2\cdot5^2-1\right)}{2^8\cdot3^3\cdot5^2}=\dfrac{1}{16}\cdot\dfrac{1}{3}\cdot\dfrac{15^2-1}{1}\)
\(=\dfrac{224}{48}=\dfrac{14}{3}\)
\(\dfrac{10^4\cdot81-16\cdot15^2}{4^4\cdot675}\).Tính
1)rut gon
a)(-48)3:163
b)\(\left(\frac{9}{10}\right)^6:\left(\frac{17}{-20}\right)^6\)
c)\(\left(\frac{-13}{8}\right)^3:\left(\frac{-32}{13}\right)^4\)
1 tìm x
a,\(\dfrac{1}{4}x-\left|-\dfrac{3}{10}\right|\)
\(\left(\dfrac{2}{5}-\dfrac{7}{10}x\right):1\dfrac{2}{3}=\dfrac{-3}{4}\)
\(\dfrac{7}{16}:\left(\dfrac{x}{4}+\dfrac{9}{2}\right)-1\dfrac{5}{6}=0\)
Rút gọn:
a) \(\dfrac{9^3}{\left(3^4-3^3\right)^2}\)
b)\(\dfrac{\left(5^4-5^3\right)^2}{1255}\)
c)\(\dfrac{32^5.81^4}{16^5.27^5}\)
d)\(\dfrac{20^{10}.81^4}{19^2.75^5}\)
e)\(\dfrac{23^3-5^5}{125}\)
f)\(\dfrac{16^4-8^5}{48}\)
1, thực hiện phép tính
\(\dfrac{\left(\dfrac{2}{5}\right)^9.10^9-\left(\dfrac{-9}{4}\right)^5:\left(\dfrac{-3}{16}\right)^{10}}{4^{12}+16^9}\)
2,CMR:\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.......+\dfrac{1}{n^2}< \dfrac{2}{3}\)với n\(\ge\)4
Rut gon : A = x|x - 2| / x^2 + 8x - 20 .
Tính
a) \(2\sqrt{\dfrac{25}{16}}-3\sqrt{\dfrac{49}{36}}+4\sqrt{\dfrac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\dfrac{1}{2}}\right)^2+\dfrac{1}{16}.\left(\sqrt{\dfrac{3}{4}}\right)^2\)
c) \(\dfrac{2}{3}\sqrt{\dfrac{81}{16}}-\dfrac{3}{4}\sqrt{\dfrac{64}{9}}+\dfrac{7}{5}.\sqrt{\dfrac{25}{196}}\)
Tính hợp lí nếu có thể
a) \(\left(\dfrac{5}{7}-\dfrac{7}{5}\right)-\left[\dfrac{1}{2}-\left(-\dfrac{2}{7}-\dfrac{1}{10}\right)\right]\)
b) \(\dfrac{2}{15}:\left(-5\dfrac{4}{5}\right).2\dfrac{5}{12}+\sqrt{1\dfrac{9}{16}}:\left(-\dfrac{3}{4}\right)\)
1) \(\left(\dfrac{1}{3}\right)^{50}.90^{25}-\dfrac{2}{3}:4\)
2) \(10.\sqrt{0,01}.\sqrt{\dfrac{16}{9}}+\sqrt{49}-\dfrac{1}{6}.\sqrt{4}\)