\(A=\frac{1}{2}+\frac{1}{2}cos\left(2a+2b\right)+\frac{1}{2}+\frac{1}{2}cos\left(2a-2b\right)-cos2a.cos2b\)
\(=1+\frac{1}{2}\left[cos\left(2a+2b\right)+cos\left(2a-2b\right)\right]-cos2a.cos2b\)
\(=1+cos2a.cos2b-cos2a.cos2b\)
\(=1\)
\(A=\frac{1}{2}+\frac{1}{2}cos\left(2a+2b\right)+\frac{1}{2}+\frac{1}{2}cos\left(2a-2b\right)-cos2a.cos2b\)
\(=1+\frac{1}{2}\left[cos\left(2a+2b\right)+cos\left(2a-2b\right)\right]-cos2a.cos2b\)
\(=1+cos2a.cos2b-cos2a.cos2b\)
\(=1\)
rút gọn:
a, A=\(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}\)
b, B=\(\frac{sin^2a+sin^2a.tan^2a}{cos^2a+cos^2a.cot^2a}\)
Rút gọn các biểu thức sau:
a, \(A=\sin^2\left(a-b\right)+\sin^2b+2\sin\left(a-b\right).\sin b.\cos a\)
b, \(B=\cos^2a+\cos^2\left(a+b\right)-2\cos a.\cos b.\cos\left(a+b\right)\)
Mọi người giúp mình với ạ!!!
A=cos(a-pi/3)-sin(a-pi/6), rút gọn A s ạ
Rút gọn biểu thức A= (1+cotx)sin^3x+(1+tanx)cos^3x
Áp dụng CT nhân đôi \(sin2x=2sinx.cosx\) để rút gọn biểu thức:
\(P=cosa.cos\left(2a\right).cos\left(4a\right)....cos\left(32a\right),a\ne k\pi\)
Cho A, B, C là 3 góc 1 tam giác. Chứng minh
a) \(cos2A+cos2B+cos2C=-1-4cosA.cosB.cosC\)
b) \(sin2A+sin2B+sin2C=4.sinA.sinB.sinC\)
Cho tam giác ABC. Hãy rút gọn:
\(a,A=cos^2\left(540^0+\frac{B}{2}\right)+cos^2\frac{1080^0+A+C}{2}+tan\frac{B}{2}tan\frac{A+C}{2}\)
b,\(B=\frac{sin\left(\frac{B}{2}+720^0\right)}{cos\frac{A+C}{2}}+\frac{cos\left(\frac{B}{2}-900^0\right)}{sin\frac{A+C}{2}}-\frac{cos\left(A+C\right)}{sinB}.tanB\)
Chứng minh rằng:
1 + 4cosa + 6cos2a + 4cos3a + cos4a = \(16\cos2a.\cos^4\frac{a}{2}\)
rút gọn
\(\dfrac{\sin^2x-\cos^2x+\cos^4x}{\cos^2x-\sin^2x+\sin^4x}\)