\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)^2:\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{x}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\cdot\sqrt{x}}=\dfrac{x-1}{x}\)
\(Q=\left(1-\dfrac{1}{\sqrt{x}}\right)^2:\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) (ĐK: x > 0)
\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)^2:\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)
\(Q=\dfrac{\left(\sqrt{x}-1\right)^2}{x}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(Q=\dfrac{\left(\sqrt{x}-1\right)^2}{x}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(Q=\dfrac{\left(\sqrt{x}-1\right)^2}{x}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(Q=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}\)
\(Q=\dfrac{x-1}{x}\)
\(Q=\left(1-\dfrac{1}{\sqrt{x}}\right)^2:\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)(ĐKXĐ: x > 0)
\(=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)^2:\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{x}:\left[\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{x}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x}\)
\(=\dfrac{x-1}{x}\)