a) Điều kiện cần có: \(\left\{{}\begin{matrix}x>0\\\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\ne0\end{matrix}\right.\)
Ta có:\(\left\{{}\begin{matrix}\sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}
=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\end{matrix}\right.\)Từ đó thế vào bài cho ta:
\(P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
b) Ta có: \(x=\dfrac{2}{2+\sqrt{3}}=\dfrac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=4-2\sqrt{3}\)
\(\Leftrightarrow\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}+1}{2}\)
Đưa vào bài, ta có: \(P=\left(\sqrt{3}-1+1\right)^2.\dfrac{\sqrt{3}+1}{2}=\dfrac{3\sqrt{3}+3}{2}\)