a:
Sửa đề: \(P=\left(\dfrac{x^2+3x}{x^3+3x^2+9x+27}+\dfrac{3}{x^2+9}\right):\left(\dfrac{1}{x+3}-\dfrac{6x}{x^3+3x^2+9x+27}\right)\)\(P=\left(\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right):\left(\dfrac{1}{x+3}-\dfrac{6x}{x^2\left(x+3\right)+9\left(x+3\right)}\right)\)
\(=\left(\dfrac{x}{x^2+9}+\dfrac{3}{x^2+9}\right):\left(\dfrac{1}{x+3}-\dfrac{6x}{\left(x+3\right)\left(x^2+9\right)}\right)\)
\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x+3\right)\left(x^2+9\right)}\)
\(=\dfrac{x+3}{x^2+9}\cdot\dfrac{\left(x+3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{\left(x+3\right)^2}{\left(x-3\right)^2}\)
b: x>0 thì x+3>3; x-3>-3
=>(x+3)^2>9; (x-3)^2>9
=>P>1
=>P ko nhận số 1