\(a,x^5+x+1\)
\(=x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(b,x^7+x^2+1\)
\(=\left(x^7-x\right)\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)\left(x^3+1\right)\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
a)\(x^5+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
=\(x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
b)\(x^7+x^2+1\)
\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
a. \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
a)x5+x+1=x5-x2+x2+x+1
=x2.(x3-1)+x2+x+1
=x2.(x-1)(x2+x+1)+x2+x+1
=(x2+x+1)[x2.(x-1)+1]
=(x2+x+1)(x3-x2+1)
b)x7+x2+1=x7-x+x2+x+1
=x.(x6-1)+x2-x+1
=x.(x3-1)(x3+1)+x2-x+1
=x.(x3+1)(x-1)(x2-x+1)+x2-x+1
=(x2-x+1)[x.(x3+1)(x-1)+1]
=(x2-x+1)(x5-x4+x2-x+1)