\(x^3+y^3+z^3-3xyz\)
\(=x^3+y^3+z^3-3xyz+3xy\left(x+y\right)-3xy\left(x+y\right)\)
\(=\left[x^3+y^3+3xy\left(x+y\right)\right]+z^3-\left[3xyz+3xy\left(x+y\right)\right]\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3xy\left(z+x+y\right)\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)