a)
\((6x+5)^2(3x+2)(x+1)-35\)
\(=(36x^2+60x+25)(3x^2+5x+2)-35\)
\(=[12(3x^2+5x+2)+1](3x^2+5x+2)-35\)
\(=(12a+1)a-35=12a^2+a-35\) (đặt \(3x^2+5x+2=a)\)
\(=4a(3a-5)+7(3a-5)=(4a+7)(3a-5)\)
\(=(12x^2+20x+15)(9x^2+15x+1)\)
b)
\(8(4x+1)(2x-3)(4x-3)(x+1)-130\)
\(=8[(4x+1)(4x-3)][(2x-3)(x+1)]-130\)
\(=8(16x^2-8x-3)(2x^2-x-3)-130\)
\(=8(8a+21)a-130\) (Đặt \(2x^2-x-3=a\) )
\(=64a^2+168a-130=2(8a-5)(4a+13)\)
\(=2(8x^2-4x+1)(16x^2-8x-29)\)
c)
\((4x+1)(12x-1)(3x+2)(x+1)-4\)
\(=[(4x+1)(3x+2)][(12x-1)(x+1)]-4\)
\(=(12x^2+11x+2)(12x^2+11x-1)-4\)
\(=(a+2)(a-1)-4\) (đặt \(a=12x^2+11x\) )
\(=a^2+a-6=(a-2)(a+3)\)
\(=(12x^2+11x-2)(12x^2+11x+3)\)
d)
\((x+2)(x+3)^2(x+4)-12\)
\(=[(x+2)(x+4)](x+3)^2-12\)
\(=(x^2+6x+8)(x^2+6x+9)-12\)
\(=a(a+1)-12\) (Đặt \(x^2+6x+8=a\) )
\(=a^2+a-12=(a-3)(a+4)=(x^2+6x+5)(x^2+6x+12)\)
\(=(x+1)(x+5)(x^2+6x+12)\)
e)
\((x^2+5x+6)(x^2-15x+56)-144\)
\(=(x+2)(x+3)(x-8)(x-7)-144\)
\(=[(x+2)(x-7)][(x+3)(x-8)]-144\)
\(=(x^2-5x-14)(x^2-5x-24)-144\)
\(=a(a-10)-144=a^2-10a-144\) (đặt \(x^2-5x-14=a\))
\(=(a-18)(a+8)=(x^2-5x-32)(x^2-5x-6)\)
\(=(x^2-5x-32)(x-6)(x+1)\)
g)
\((x^2-11x+28)(x^2-7x+10)-72\)
\(=(x-7)(x-4)(x-2)(x-5)-72\)
\(=[(x-7)(x-2)][(x-4)(x-5)]-72\)
\(=(x^2-9x+14)(x^2-9x+20)-72\)
\(=a(a+6)-72\) (Đặt \(x^2-9x+14=a\) )
\(=a^2+6a-72=(a-6)(a+12)\)
\(=(x^2-9x+8)(x^2-9x+26)\)
\(=(x-1)(x-8)(x^2-9x+26)\)