a) \(3x^2+8x-11\)
\(=3x^2-3+11x-11\)
\(=\left(3x^2-3x\right)+\left(11x-11\right)\)
\(=3x\left(x-1\right)+11\left(x-1\right)\)
\(=\left(x-1\right)\left(3x+11\right)\)
b) \(x^4+2018x^2-2017x+2018\)
\(=\left(x^4+x\right)+\left(2018x^2-2018x+2018\right)\)
\(=x\left(x^3+1\right)+2018\left(x^2-x+1\right)\)
\(=x\left(x+1\right)\left(x^2-x+1\right)+2018\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left[x\left(x+1\right)+2018\right]\)
\(=\left(x^2-x+1\right)\left(x^2+x+2018\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+2018\right)\)
a) 3x2 + 8x - 11
=3x2+11x-3x-11
=x(3x+11)-(3x+11)
= (x-1)(3x+11)