a) a2 + 2ab + b2 - c2 + 2cd - d2
= ( a2 + 2ab + b2 ) - ( c2 - 2cd + d\(^2\) )
= ( a + b )\(^2\) - ( c - d )\(^2\)
= ( a + b + c - d ) ( a + b - c + d )
b) xz - yz - x2 + 2xy - y\(^2\)
= ( xz - yz ) - ( x\(^2\) - 2xy + y\(^2\) )
= z( x - y ) - ( x - y )\(^2\)
= ( x - y ) ( z - x - y )
d) a2x + aby - 2abx - 2b2y
= ( a\(^2\)x - 2abx ) + ( aby - 2b\(^2\)y )
= ax ( a - 2b ) + by ( a- 2b )
= ( ax + by ) ( a - 2b )