a) 6x - 9 - x2
= -( x2 - 6x + 32)
= -(x-3)2
b) 5x3 - 10x2y + 5xy2
= 5x( x2 - 2xy + y2)
= 5x(x - y)2
c) 5x2 - 10xy + 5y2 - 20z2
= 5( x2 - 2xy + y2 - 4z2)
= 5[( x - y)2 - ( 2z)2]
= 5( x - y -2z).(x - y +2z)
d) x2 + 5x +6
=( x2 + 2.2x + 22 )+ (2 +x)
=( x +2)2 + ( x +2)
= ( x+2).( x + 2 + 1)
= ( x +2).( x +3)
e) a2 + 9a + 8
= a2 + a + 8a + 8
= a( a + 1) + 8( a +1)
= ( a +1).( a +8)
g) x2 -x -6
= x2 - 22 - x - 2
= ( x -2).(x +2) - ( x +2)
= ( x +2).( x -2 -1)
= ( x+2).( x -3)
f) x2 + 6x +5
= x2 + x + 5x + 5
= x( x +1) +5( x +1)
=( x +5).( x +1)
h) x3 - 3x +2
= x3 - x - 2x +2
= x( x2 -1) - 2( x -1)
= x(x -1).(x+1) - 2( x -1)
= ( x -1).( x2 +x -2)
Câu 1 : 6x - 9 - x2
\(=-\left(6x+9+x^2\right)\)
\(=-\left(x^2+6x+9\right)\)
\(=-\left(x^2+2.x.3+3^2\right)\)
\(=-\left(x+3\right)^2\)
Câu 2 : 5x3 - 10x2y + 5xy2
* Gợi ý : Câu này ta thấy đa thức có thừa số chung là 5x nên ta phân tích đa thức thành nhân tử bằng phương thức đặt thừa số chung.
Giải :
\(5x^3-10xy^2+5xy^2\)
\(=5x\left(x^2-2xy+y^2\right)\)
\(\text{a) }6x-9-x^2\\ =-\left(x^2+6x+9\right)\\ =-\left(x+3\right)^2\) \(\text{b) }5x^3-10x^2y+5xy^2\\ =5x\left(x^2-2xy+y^2\right)\\ =5x\left(x-y\right)^2\)
\(\text{c) }5x^2-10xy+5y^2-20z^2\\ =5\left(x^2-2xy+y^2-4z^2\right)\\ =5\left[\left(x^2-2xy+y^2\right)-4z^2\right]\\ =5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\\ =5\left(x-y-2z\right)\left(x-y+2z\right)\) \(\text{d) }x^2+5x+6\\ =x^2+3x+2x+6\\ =\left(x^2+3x\right)+\left(2x+6\right)\\ =x\left(x+3\right)+2\left(x+3\right)\\ =\left(x+2\right)\left(x+3\right)\)
\(\text{e) }a^2+9a+8\\ =a^2+a+8a+8\\ =\left(a^2+a\right)+\left(8a+8\right)\\ =a\left(a+1\right)+8\left(a+1\right)\\ =\left(a+8\right)\left(a+1\right)\) \(\text{f) }x^2-x-6\\ =x^2-3x+2x-6\\ =\left(x^2-3x\right)+\left(2x-6\right)\\ =x\left(x-3\right)+2\left(x-3\right)\\ =\left(x+2\right)\left(x-3\right)\)
\(\text{g) }x^2+6x+5\\ =x^2+x+5x+5\\ =\left(x^2+x\right)+\left(5x+5\right)\\ =x\left(x+1\right)+5\left(x+1\right)\\ =\left(x+1\right)\left(x+5\right)\)
\(\text{h) }x^3-3x+2\\=x^3-4x+x+2-2x^2+2x^2+2\\ =\left(x^3-2x^2+x\right)-\left(2x^2-4x+2\right)\\ = x\left(x^2-2x+1\right)-2\left(x^2-2x+1\right)\\ =\left(x-2\right)\left(x^2-2x+1\right)\\ =\left(x-2\right)\left(x-1\right)^2\)