a, \(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+3\right)\left(x+1\right)\)
b, \(4x^2+4x-3=\left(2x\right)^2+2.2x+1-4=\left(2x+1\right)^2-2^2=\left(2x+1-2\right)\left(2x+1+2\right)=\left(2x-1\right)\left(2x+3\right)\)
c, \(x^2-x-12=x^2-x+\dfrac{1}{4}-\dfrac{49}{4}=\left(x-\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(x-\dfrac{1}{2}-\dfrac{7}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(x-4\right)\left(x+3\right)\)
d, \(4x^4+4x^2y^2-8y^4=\left(2x^2\right)^2+2.2x^2y^2+\left(y^2\right)^2-9y^4=\left(2x^2+y^2\right)^2-\left(3y^2\right)^2=\left(2x^2+y^2-3y^2\right)\left(2x^2+y^2+3y^2\right)=\left(2x^2-2y^2\right)\left(2x^2+4y^2\right)=4\left(x+y\right)\left(x-y\right)\left(x^2+2y^2\right)\)