a,\(P=\dfrac{\sqrt{x}-1-2}{\sqrt{x}-1}=1-\dfrac{2}{\sqrt{x-1}}\)
P<\(\dfrac{1}{2}\)\(\Leftrightarrow1-\dfrac{2}{\sqrt{x}-1}< \dfrac{1}{2}
\)
\(\Leftrightarrow\dfrac{1}{2}< \dfrac{2}{\sqrt{x}-1}\)\(\Leftrightarrow\dfrac{2}{4}< \dfrac{2}{\sqrt{x}-1}\)
\(\Rightarrow4>\sqrt{x}-1
\Leftrightarrow5>\sqrt{x}\)
\(\Leftrightarrow25>x\)
b, x=\(\sqrt{4+2.2.\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{3}+3}\)
= \(\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
= \(|2+\sqrt{3}|+|2-\sqrt{3}|\)
= \(2+\sqrt{3}+2-\sqrt{3}=4\)
suy ra P=\(\dfrac{\sqrt{4}-3}{\sqrt{4}-1}=\dfrac{-1}{1}=-1\)