1. Cho pt 2x2 - 12x + 2m - 1 = 0 (1)
Tìm m để pt (1) có 2 nghiệm nhỏ hơn 1.
2. Cho pt: x2 - 5x + m +4 = 0.Tìm các giá trị của m để pt có 2 nghiệm phân biệt x1 , x2 thỏa mãn:
a) | x2 - x1| = 3
b) |x1| + |x2| = 4
Cho PT: mx2-3x-1+2m=0
a) Khi m=1, không giải phương trình. Tính:
A= x12-x22
B= x13-x23
C=x14-x24
b) Chứng tỏ PT có nghiệm với mọi m
c) Tìm m để PT có 2 nghiệm thỏa mãn x12+x22 =11
Cho 2pt : x^2 -5x+k=0 (1) x^2 -7x +2k=0 (2)
Xác định k để 1 trong các nghiệm của pt (2) lớn gấp đôi 1 trong các nghiệm của pt (1)
1, Cho pt: x3 - 5x2 + (2m+5)x - 4m +2 = 0.
a) Tìm m để phương trình có 3 nghiệm phân biệt
b) Tìm m để x12 + x22 + x32=11
2, x1 và x2 là nghiệm phương trình: x2-2x-4=0. Tính: x17+x27.
1. cho pt x2-2(m-2)x-2m=0 với x là ẩn số giá trị của m để pt có 2 nghiệm là 2 số đối nhau là
a,0 b, \(\dfrac{-1}{2}\) c, 2 d, 4
2. biết rằng (x0; y0)là nghiệm của hệ pt \(\left\{{}\begin{matrix}x+2y-3=0\\2x-y-1=0\end{matrix}\right.\) tổng x0 + y0 bằng
a,3 b,1 c,0 d, 2
3. trong △ABC vuông tại A có AC=3; AB=4 khi đó tanB bằng
a,\(\dfrac{4}{5}\) b,\(\dfrac{3}{5}\) c,\(\dfrac{3}{4}\) d \(\dfrac{4}{3}\)
4. trên đg tròn (O;R) lấy 2 điểm A,B sao cho số đo cung AB lớn hơn bằng \(270^o\) độ dài dây cung là
a, R\(\sqrt{2}\) b, R\(\sqrt{3}\) c, R d, 2R\(\sqrt{2}\)
5. cho đg tròn (O;3cm) 2 điểm A,B thuộc đường tròn và sđ \(\stackrel\frown{AB}\) = \(60^o\) độ dài cung nhỏ AB là
a, \(\dfrac{\pi}{2}\) cm b, \(3\pi\) c, \(\dfrac{\pi}{3}cm\) d, \(\pi\)cm
6. giá trị của m để 2 đg thẳng (d): y=xm+6 và (d'): y=3x+2-m song song là
a, m=-2 b, m=-3 c, m=-4 d, m=1
7. cho hàm số bậc nhất y=ax+b có hệ số góc bằng -1 và tung độ góc bằng 3 giá trị của biểu thức a2+b bằng
a,2 b, 4 c, 9 d, 5
8. cho hệ pt \(\left\{{}\begin{matrix}3x+my=1\\nx+y=3\end{matrix}\right.\) với m,n là tham số biết rằng (x;y)=(1,1) là 1 nghiệm của hệ đã cho giá trị của m+n bằng
a, -1 b, 3 c, 1 d, 2
9.cho Parabol (P) có pt \(y=\dfrac{x^2}{4}\) vào đường thẳng (d): y=-2x-4
a, (P) cắt (d) tại 2 điểm phân biệt
b, (P) cắt (d) tại điểm duy nhất (-2;2)
c, (P) ko cắt (d)
d, (P) tiếp xúc với (d), tiếp điểm là (-4;4)
10. tất cả các giá trị của x để \(\sqrt{-2x+6}\) có nghĩa là
a, x≥3 b, x>3 c, x≤3 d, x<-3
1. Giaỉ pt
x^2 - 3x^2 - 4=0
2. Cho pt: x^2 - 6x + 2m - 3 = 0(1) với m là tham số
a) Giaỉ pt khi m=-2
b) Tìm các giá trị của m để pt (1) có 2 nghiệm x1 , x2 thỏa mãn x21.x22 + x21.x22 = 24
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)
1. Cho pt: x2 -2(m-1)x + m2 - 3m = 0
a) Tìm m để pt có 2 nghiệm phân biệt
b) Tìm m để pt có 2 nghiệm x1 , x2 thỏa mãn x21+ x22 = 8
c) Tìm GTNN của A= x21 + x22
2. Cho pt: x2 - 5x + m +4 = 0.Tìm các giá trị của m để pt có 2 nghiệm phân biệt x1 , x2 thỏa mãn:
a) | x2 - x1| = 3
b) |x1| + |x2| = 4
cho pt: x2 -2(m-1)x + m - 3 = 0 (1)
a) c/m: pt có 2 nghiệm phân biệt với mọi m
b) gọi x1 , x2 là nghiệm của pt (1). tìm GTNN của biểu thức M = x12 + 2(m-1)x2 - m + 1