\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{a+b}\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{1}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2=ab\)
\(\Rightarrow\dfrac{b}{a}+\dfrac{a}{b}=\dfrac{a^2+b^2}{ab}=\dfrac{\left(a+b\right)^2-2ab}{ab}=\dfrac{ab-2ab}{ab}=\dfrac{-ab}{ab}=-1\)
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{a+b}{ab}\Rightarrow\dfrac{a+b}{ab}=\dfrac{1}{a+b}\)
\(\Leftrightarrow ab=\left(a+b\right)^2\)
Vậy, \(\dfrac{b}{a}+\dfrac{a}{b}=\dfrac{a^2+b^2}{ab}=\dfrac{a^2+2ab+b^2-2ab}{ab}=\dfrac{\left(a+b\right)^2-2ab}{ab}=\dfrac{ab-2ab}{ab}=\dfrac{-ab}{ab}=-1\)