Bài 2: Cực trị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Long

Mọi người giúp mình câu này với! Mình cảm ơn!

Gọi K là tập hợp tất cả các giá trị của tham số m để phương trình sin2x + \(\sqrt{2}\)sin(x+\(\dfrac{\pi}{4}\)) - 2 = m có đúng hai nghiệm thuộc khoảng (0;\(\dfrac{3\pi}{4}\)). Tìm K ??

Bùi Thị Vân
25 tháng 12 2017 lúc 15:29

\(pt\Leftrightarrow2sinx.cosx+\left(sinx+cosx\right)-2=m\)
đặt \(sinx+cosx=t\) , do \(x\in\left(0;\dfrac{3\pi}{4}\right)\) thì \(x+\dfrac{\pi}{4}\in\left(\dfrac{\pi}{4};\pi\right)\).
Vì vậy \(t=sinx+cosx=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\) có tập giá trị là \(\left(0;\sqrt{2}\right)\).
Suy ra \(2sinxcosx=t^2-1\), ta có phương trình:
\(t^2-1+t-2=m\Leftrightarrow t^2+t-3=m\) với \(t\in\left(0;\sqrt{2}\right)\).
Xét hàm số \(f\left(t\right)=t^2+t-3\)\(f'\left(t\right)=2t+1\ge0\) với mọi \(t\in\left(0;\sqrt{2}\right)\).
Suy ra hàm số \(f\left(t\right)=t^2+t-3\) đồng biến trên khoảng \(\left(0;\sqrt{2}\right)\).
\(f\left(0\right)=-3;f\left(\sqrt{2}\right)=\sqrt{2}-1\).
Vậy với \(-3< m< \sqrt{2}-1\) thì \(t^2+t-3=m\) có nghiệm duy nhất.
Quay trở lại phép đặt t ta có: \(t=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\) . Để phương trình \(t=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\) có hai nghiệm thuộc khoảng \(\left(0;\dfrac{3\pi}{4}\right)\) thì \(t\) nhận các giá trị tương ứng với \(x+\dfrac{\pi}{4}\in\left(\dfrac{\pi}{4};\dfrac{3\pi}{4}\right)\) hay \(\dfrac{\sqrt{2}}{2}< t< 1\).
Suy ra \(\dfrac{-5+\sqrt{2}}{2}< m< 0\),

Doan Minh Cuong
1 tháng 2 2018 lúc 15:59

Bài giả của bạn Bùi Thị Vân có nhầm lẫn, đáp số bạn Vân đưa ra là \(\dfrac{-5+\sqrt{2}}{2}< m< 0\). Có thể thấy \(m=-1\) thuộc khoảng \(\left(\dfrac{-5+\sqrt{2}}{2};0\right)\) nhưng với \(m=-1\) thì phương trình \(t^2+t-3=m\Leftrightarrow t^2+t-3=-1\)\(\Leftrightarrow t=1;t=-2\). Phương trình đã cho tương đương với \(\sin x+\cos x=1\Leftrightarrow\sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\). Đặt \(y=x+\dfrac{\pi}{4}\) thì \(\dfrac{\pi}{4}< y< \pi\) (do \(x\in\left(0;\dfrac{3\pi}{4}\right)\)) và phương trình trở thành \(\sin y=\dfrac{1}{\sqrt{2}}\). Trong khoảng \(\dfrac{\pi}{4}< y< \pi\)phương trình \(\sin y=\dfrac{1}{\sqrt{2}}\) có nghiệm duy nhất \(y=\dfrac{3\pi}{4}\) nên phương trình đã cho có nghiệm duy nhất \(x=\dfrac{\pi}{2}\) (chứ không phải là có đúng hai nghiệm như yêu cầu đề bài). Xin sửa lại bài giải như sau:

- Đặt \(t=\sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\left(\sin x+\cos x\right)\) thì \(t\sqrt{2}=\sin x+\cos x\Rightarrow2t^2=1+2\sin x\cos x=1+\sin2x\) nên \(\sin2x=2t^2-1\), phương trình đã cho trở thành \(2t^2-1+\sqrt{2}t-2=m\Leftrightarrow2t^2+\sqrt{2}t-3=m\) (1)

-Vì phương trình đã cho được xét trong khoảng \(\left(0;\dfrac{3\pi}{4}\right)\) tức là \(x+\dfrac{\pi}{4}\in\left(\dfrac{\pi}{4};\pi\right)\) suy ra \(t=\sin\left(x+\dfrac{\pi}{4}\right)\in(0;1]\). Do đó để phương trình đã cho có nghiệm \(x\in\left(0;\dfrac{3\pi}{4}\right)\), điều kiện cần và đủ là (1) có nghiệm \(t\in(0;1]\), tức là số \(m\) phải thuộc tập giá trị của hàm số \(f\left(t\right)=2t^2+\sqrt{2}t-3\) với \(t\in(0;1]\). Ta có \(f'\left(t\right)=4t+\sqrt{2}>0,\)\(\forall t\in(0;1]\) nên \(f\left(t\right)\)đồng biến trong khoảng \(t\in(0;1]\) và tập giá trị của nó là khoảng \((f\left(0\right);f\left(1\right)]=(-3;\sqrt{2}-1]\). Như vậy điều kiện cần để yêu cầu bài toán được thực hiện là \(m\in(-3;\sqrt{2}-1]\).

- Với \(m\in(-3;\sqrt{2}-1]\), chú ý rằng \(f\left(t\right)\) đồng biến trong khoảng \(t\in(0;1]\) nên (1) có nghiệm duy nhất \(t_0\in(0;1]\) và phương trình đã cho tương đương với \(\sin\left(x+\dfrac{\pi}{4}\right)=t_0\) (2). Ta cần đếm số nghiệm của (2) trong khoảng \(\left(0;\dfrac{3\pi}{4}\right)\). Để làm điều đó, ta đặt \(y=x+\dfrac{\pi}{4}\Leftrightarrow x=y-\dfrac{\pi}{4}\) thì (2) trở thành \(\sin y=t_0\)\(y\in\left(\dfrac{\pi}{4};\pi\right)\).

Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Hình trên biểu diễn đồ thị hàm số \(y=\sin x\) với \(x\in(\dfrac{\pi}{4};\pi]\). Ta thấy phương trình \(\sin y=t_0\) có 2 nghiệm trong khoảng này khi và chỉ khi \(\dfrac{\sqrt{2}}{2}< t_0< 1\), tức là \(m\) phải thuộc tập giá trị của hàm số \(f\left(t\right)=2t^2+\sqrt{2}t-3\) với

\(t\in\left(\dfrac{\sqrt{2}}{2};1\right)\), điều này xảy ra khi và chỉ khi \(f\left(\dfrac{\sqrt{2}}{2}\right)< m< f\left(1\right)\Leftrightarrow-1< m< \sqrt{2}-1\).

Đáp số: \(-1< m< \sqrt{2}-1\).

Chú ý: Bài toán này có thể giải không dùng đạo hàm. Các bạn thử tìm một cách giải như vậy.


Các câu hỏi tương tự
Tâm Cao
Xem chi tiết
AllesKlar
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Quân Trương
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
thaoanh le thi thao
Xem chi tiết
Tâm Cao
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết
Tâm Cao
Xem chi tiết