Bài 1:
\(\left|5x-4\right|=\left|x+2\right|\)
\(\Rightarrow\left\{{}\begin{matrix}5x-4=-\left(x+2\right)\\5x-4=x+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5x-4=-x-2\\5x-x=2+4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5x+x=-2+4\\4x=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6x=2\\x=\dfrac{6}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{3};\dfrac{3}{2}\right\}\)
Bài 2:
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};.....;\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right).n}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right).n}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với mọi \(a\in N\)*)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1}-\dfrac{1}{n}< 1\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1\)
Chúc bạn học tốt nha!!!