\(\lim\limits_{x\rightarrow3^-}\frac{\sqrt{\left(3-x\right)\left(4-x\right)}}{\sqrt{\left(3-x\right)\left(3+x\right)}}=\lim\limits_{x\rightarrow3^-}\frac{\sqrt{4-x}}{\sqrt{3+x}}=\frac{1}{\sqrt{6}}\)
\(\lim\limits_{x\rightarrow3^-}\frac{\sqrt{\left(3-x\right)\left(4-x\right)}}{\sqrt{\left(3-x\right)\left(3+x\right)}}=\lim\limits_{x\rightarrow3^-}\frac{\sqrt{4-x}}{\sqrt{3+x}}=\frac{1}{\sqrt{6}}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{6x-9}-\sqrt[3]{27x-54}}{\left(x-3\right)\left(x^2+3x-18\right)}\)
\(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-80}{x-3}=5\). Tính \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[4]{f\left(x\right)+1}-3}{2x^2-11x+15}\)
\(\lim\limits_{x\rightarrow+\infty}\frac{1}{4x-2}\left(\sqrt{\frac{8x^2+x-3}{x+4}}\right)\)
ai đó giúp với xin cảm ơn nhiều
\(\lim\limits_{x\to 1}\) \(\dfrac{\sqrt[3]{x+7}-\sqrt{x+3}}{x^2-3x+2}\)
Giải hộ mình câu này với
\(\lim\limits_{x\rightarrow\pm\infty}\left(2\sqrt{x^2+x+4}\pm\sqrt[3]{8x^3+x^2+3}\right)\)
giải giúp mình với xin cảm ơn nhiều !
\(\lim\limits_{x\rightarrow3}\left(5x^2-7x\right)\) bằng:
A. 2
B. \(+\infty\)
C. 24
D. 0
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+5x}+\sqrt{4x^2-x}+3x}{\sqrt{4x^2-7x}+2x}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow a^+}\dfrac{\sqrt{x}-a+\sqrt{x-a}}{\sqrt{x^2-a^2}}\)
b) \(\lim\limits_{x\rightarrow7}\dfrac{\sqrt{x+2}-\sqrt[3]{x+20}}{\sqrt[4]{x+9}-2}\)
\\(\\lim\\limits_{x\\rightarrow8}\\frac{\\sqrt[3]{x}-2}{2x-16}\\)
\n\n\\(\\lim\\limits_{x\\rightarrow-2}\\frac{\\sqrt{x-3}-1}{\\sqrt[3]{x-6}+2}\\)
\n\n\\(\\lim\\limits_{x\\rightarrow1}\\frac{2x-1-\\sqrt{x^2+2x-2}}{x^2-4x+3}\\)
\n