\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-24x^2-4x+1}{\sqrt{x^2-4x+1}+5x}\) \(=\lim\limits_{x\rightarrow+\infty}\dfrac{-24x-4+\dfrac{1}{x}}{\sqrt{1-\dfrac{4}{x}+\dfrac{1}{x^2}}+5}=-\infty\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-24x^2-4x+1}{\sqrt{x^2-4x+1}+5x}\) \(=\lim\limits_{x\rightarrow+\infty}\dfrac{-24x-4+\dfrac{1}{x}}{\sqrt{1-\dfrac{4}{x}+\dfrac{1}{x^2}}+5}=-\infty\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+5x}+\sqrt{4x^2-x}+3x}{\sqrt{4x^2-7x}+2x}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2x\left(\sqrt{4x^2-2x}+\sqrt[3]{3x^2-8x^3}\right)}{5x-1}\)
1) lim(2x-1-\(\sqrt{4x^2-4x-3}\))
2) lim\(\dfrac{\sqrt{2x^2-2}-\sqrt{4x-3}+2x-7}{9-x^2}\)
3) lim(\(x^3-1\sqrt{\dfrac{x}{x^2-1}}\)
Giúp giùm mình đi mấy bạn
Tính giới hạn
a) \(\lim\limits_{x->0}\dfrac{\sqrt[m]{2x+1}-1}{\sqrt[n]{x+1}-1}\)
b) \(\lim\limits_{x->3}\dfrac{\sqrt[4]{5x+1}-2}{x-3}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow2}\dfrac{1-\sqrt{x^2+3}}{-x^2+3x-2}\)
b, \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{4x-1}+3}{x^2-4}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)
b, \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+x+2}}{x-1}\)
b, \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-x}+2x\right)\)
tính các giới hạn sau:
a. \(lim\dfrac{\sqrt{x+1}-x+1}{x^2-5x+6}\)
x->3
b. \(lim\left|x^3-3x\right|\)
x->-2
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x}-\sqrt[3]{x^2+7}}{x^2-1}\)
b, \(\lim\limits_{x\rightarrow4}\dfrac{x^2-4x}{x^2+x-20}\)