- Thay x = 1 vào hệ phương trình ta được :\(\left\{{}\begin{matrix}m-y=2\\3+my=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=y+2\\my=2\end{matrix}\right.\)
- Thay m ở PT(I) vào PT ( II ) ta được :\(y\left(y+2\right)=2\)
\(\Leftrightarrow y^2+2y-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1-\sqrt{3}\\y=-1+\sqrt{3}\end{matrix}\right.\)
- Thay lại y vào PT ( I ) ta được : \(\left[{}\begin{matrix}m=1-\sqrt{3}\\m=1+\sqrt{3}\end{matrix}\right.\)
Vậy tồn tại 2 giá trị của m là \(1\pm\sqrt{3}\) thỏa mãn yêu cầu đề bài .