Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nam Võ

\(\left\{{}\begin{matrix}2x^2+y^2-3xy+3x-2y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{matrix}\right.\)

Akai Haruma
29 tháng 11 2017 lúc 23:57

Lời giải:

Xét PT(1)

\(2x^2+y^2-3xy+3x-2y+1=0\)

\(\Leftrightarrow 2x^2-3x(y-1)+(y-1)^2=0\)

Đặt \(y-1=t\Rightarrow 2x^2-3xt+t^2=0\)

\(\Leftrightarrow (x-t)(2x-t)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-t=0\\2x-t=0\end{matrix}\right.\)

TH1: \(x-t=0\Leftrightarrow x=t=y-1\)

Thay vào PT(2)

\(\Rightarrow 4(y-1)^2-y^2+(y-1)+4=\sqrt{3y-2}+\sqrt{5y-1}\)

\(3y^2-7y+7=\sqrt{3y-2}+\sqrt{5y-1}\)

\(\Leftrightarrow 3(y^2-3y+2)=\sqrt{3y-2}-y+\sqrt{5y-1}-(y+1)\)

\(\Leftrightarrow 3(y^2-3y+2)=\frac{3y-2-y^2}{\sqrt{3y-2}+y}+\frac{3y-2-y^2}{\sqrt{5y-1}+y+1}\)

\(\Leftrightarrow (y^2-3y+2)\left[3+\frac{1}{\sqrt{3y-2}+y}+\frac{1}{\sqrt{5y-1}+y+1}\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông luôn lớn hơn 0. Do đó \(y^2-3y+2=0\Leftrightarrow y=1\) hoặc \(y=2\)

Kéo theo \(x=0\) hoặc x=1

TH2: \(2x=t=y-1\)

\(\Leftrightarrow y=2x+1\). Thay vào PT(2)

\(4x^2-(2x+1)^2+x+4=\sqrt{4x+1}+\sqrt{9x+4}\)

\(3-3x=\sqrt{4x+1}+\sqrt{9x+4}\)

\(\Leftrightarrow \sqrt{4x+1}-1+\sqrt{9x+4}-2+3x=0\)

\(\Leftrightarrow \frac{4x}{\sqrt{4x+1}+1}+\frac{9x}{\sqrt{9x+4}+2}+3x=0\)

\(\Leftrightarrow x\left(\frac{4}{\sqrt{4x+1}+1}+\frac{9}{\sqrt{9x+4}+2}+3\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0. Do đó x=0 kéo theo \(y=1\)

Vậy \((x,y)\in\left\{(0;1);(1;2)\right\}\)


Các câu hỏi tương tự
Nguyen huu tien
Xem chi tiết
poppy Trang
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
DRACULA
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
A Lan
Xem chi tiết
Trinh Tuyết Na
Xem chi tiết